765 research outputs found

    A review of virtual reality based training simulators for orthopaedic surgery

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThis review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator.Wessex Academic Health Science Network (Wessex AHSN) Innovation and Wealth Creation Accelerator Fund 2014/15Bournemouth Universit

    How dynamic are ice-stream beds?

    Get PDF
    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3–6 years apart, along a cumulative ∼ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a‾¹, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a‾¹ previously reported from repeat geophysical surveys in West Antarctica

    The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

    Get PDF
    Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation. © 2014 Springer Science+Business Media Dordrecht

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    No contribution of GSTM1 and GSTT1 null genotypes to the risk of neutropenia due to benzene exposure in Southeastern Brazil

    Get PDF
    Exposure to benzene has been associated with haematological diseases such as neutropenia (NEB) and acute myeloid leukaemia (AML). We tested whether the null genotypes of the GSTM1 and GSTT1 genes, involved in benzene inactivation, altered the risk for NEB in southeastern Brazil. Genomic DNA from 55 NEB patients and 330 controls was analysed by multiplex-polymerase chain reaction. The frequency of the GSTM1, GSTT1 and combined null genotypes was similar in patients and controls (GSTM1, 27.3% vs. 38.8%, p = 0.16; GSTT1, 25.5% vs. 19.7%, p = 0.24; GSTM1/GSTT1, 12.7% vs. 6.7%, p = 0.26; respectively). The distribution of genotype classes in NEB patients was similar to normal controls, suggesting that GSTM1 and GSTT1 null genotypes make no specific contribution to the risk of NEB. As the GSTM1 and GSTT1 null genotypes were previously associated with increased risk for AML in Brazil and elsewhere, we hypothesise that different thresholds of chemical exposure relative to distinct GSTM1 and GSTT1 genotypes may determine whether AML or NEB manifests in benzene exposed individuals from southeastern Brazil. Although indicative, our results still require support by prospective and large scale epidemiological studies, with rigorous assessment of daily chemical exposures and control of the possible contribution of other polymorphic genes involved in benzene metabolism

    Fluid flow in the osteocyte mechanical environment : a fluid-structure interaction approach

    Get PDF
    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity (3,000με compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities (∼60.5μ m/s ) and average maximum shear stresses (∼11 Pa ) surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology

    Anxiolytic Effects of the MCH1R Antagonist TPI 1361-17

    Get PDF
    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts on the MCH1 receptor. MCH1R is expressed widely throughout the brain, particularly in regions thought to be involved in the regulation of stress and emotional response. The role of MCH in anxiety has been controversial, however. Central administration of MCH has been reported to promote or reduce anxiety-like behaviors. The anxiolytic activity of several MCH1R antagonists has also been debated. To address this issue, we have tested whether TPI 1361-17, a highly specific and high affinity MCH1R antagonist, exerts anxiolytic effects in two commonly used models of anxiety, the elevated plus maze and the light–dark transition test. We show that this MCH1R antagonist exerts potent anxiolytic effects in both assays. Our study therefore supports previous studies indicating that MCH1R antagonists may be useful in the treatment of anxiety

    Expression Signature of IFN/STAT1 Signaling Genes Predicts Poor Survival Outcome in Glioblastoma Multiforme in a Subtype-Specific Manner

    Get PDF
    Previous reports have implicated an induction of genes in IFN/STAT1 (Interferon/STAT1) signaling in radiation resistant and prosurvival tumor phenotypes in a number of cancer cell lines, and we have hypothesized that upregulation of these genes may be predictive of poor survival outcome and/or treatment response in Glioblastoma Multiforme (GBM) patients. We have developed a list of 8 genes related to IFN/STAT1 that we hypothesize to be predictive of poor survival in GBM patients. Our working hypothesis that over-expression of this gene signature predicts poor survival outcome in GBM patients was confirmed, and in addition, it was demonstrated that the survival model was highly subtype-dependent, with strong dependence in the Proneural subtype and no detected dependence in the Classical and Mesenchymal subtypes. We developed a specific multi-gene survival model for the Proneural subtype in the TCGA (the Cancer Genome Atlas) discovery set which we have validated in the TCGA validation set. In addition, we have performed network analysis in the form of Bayesian Network discovery and Ingenuity Pathway Analysis to further dissect the underlying biology of this gene signature in the etiology of GBM. We theorize that the strong predictive value of the IFN/STAT1 gene signature in the Proneural subtype may be due to chemotherapy and/or radiation resistance induced through prolonged constitutive signaling of these genes during the course of the illness. The results of this study have implications both for better prediction models for survival outcome in GBM and for improved understanding of the underlying subtype-specific molecular mechanisms for GBM tumor progression and treatment response
    • …
    corecore